Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Microbes Infect ; : 105335, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38582147

RESUMEN

Zoonotic streptococci cause several invasive diseases with high mortality rates, especially meningitis. Numerous studies elucidated the meningitis pathogenesis of zoonotic streptococci, some specific to certain bacterial species. In contrast, others are shared among different bacterial species, involving colonization and invasion of mucosal barriers, survival in the bloodstream, breaching the blood-brain and/or blood-cerebrospinal fluid barrier to access the central nervous system, and triggering inflammation of the meninges. This review focuses on the recent advancements in comprehending the molecular and cellular events of five major zoonotic streptococci responsible for causing meningitis in humans or animals, including Streptococcus agalactiae, Streptococcus equi subspecies zooepidemicus, Streptococcus suis, Streptococcus dysgalactiae, and Streptococcus iniae. The underlying mechanism was summarized into four themes, including 1) bacterial survival in blood, 2) brain microvascular endothelial cell adhesion and invasion, 3) penetration of the blood-brain barrier, and 4) activation of the immune system and inflammatory reaction within the brain. This review may contribute to developing therapeutics to prevent or mitigate injury of streptococcal meningitis and improve risk stratification.

2.
Res Sq ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38562722

RESUMEN

Background: The choroid plexus (CP) is an understudied tissue in the central nervous system (CNS), primarily implicated in cerebrospinal fluid (CSF) production. Additionally, CP produces numerous neurotrophic factors (NTF), which circulate to different regions of the brain. Regulation of NTF in the CP during natural aging has yet to be discovered. Here, we investigated the age and gender-specific transcription of NTFs along with the changes in the tight junctional proteins (TJPs) and water channel protein Aquaporin (AQP1). Methods: We used male and female mice for our study. We analyzed neurotrophic factor gene expression patterns using quantitative and digital droplet PCR at three different time points: mature adult, middle-aged, and aged. Additionally, we used immunohistochemical analysis (IHC) to evaluate in vivo protein expression. We further investigated the cellular phenotype of these NTFS, TJP and water channel proteins in the mouse CP by co-labeling them with the classical vascular marker, Isolectin B4, and epithelial cell marker, plectin. Results: Aging significantly altered the NTF's gene expression in the CP Brain-derived neurotrophic factor (BDNF), Midkine, VGF, Insulin-like growth factor (IGF1), IGF2, klotho, Erythropoietin, and its receptor were reduced in the aged CP of males and females. Vascular endothelial growth factor (VEGF) transcription was gender-specific; in males, gene expression is unchanged in the aged CP while females showed an age-dependent reduction. Age-dependent changes in VEGF localization were evident, from vasculature to epithelial cells. IGF2 and klotho localized in the basolateral membrane of the CP and showed an age-dependent reduction in epithelial cells. Water channel protein AQP1 localized in the tip of epithelial cells and showed an age-related reduction in mRNA and protein levels. TJP's JAM, CLAUDIN1, CLAUDIN2, and CLAUDIN5 were reduced in aged mice. Conclusions: Our study highlights transcriptional level changes in the CP during aging. The age-related transcriptional changes exhibit similarities as well as gene-specific differences in the CP of males and females. Altered transcription of the water channel protein AQP1 and TJPs could be involved in reduced CSF production during aging. Importantly, reduction in the neurotrophic factors and longevity factor Klotho can play a role in regulating brain aging.

3.
J Tissue Eng ; 15: 20417314241235527, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38516227

RESUMEN

In vitro modeling of brain tissue is a promising but not yet resolved problem in modern neurobiology and neuropharmacology. Complexity of the brain structure and diversity of cell-to-cell communication in (patho)physiological conditions make this task almost unachievable. However, establishment of novel in vitro brain models would ultimately lead to better understanding of development-associated or experience-driven brain plasticity, designing efficient approaches to restore aberrant brain functioning. The main goal of this review is to summarize the available data on methodological approaches that are currently in use, and to identify the most prospective trends in development of neurovascular unit, blood-brain barrier, blood-cerebrospinal fluid barrier, and neurogenic niche in vitro models. The manuscript focuses on the regulation of adult neurogenesis, cerebral microcirculation and fluids dynamics that should be reproduced in the in vitro 4D models to mimic brain development and its alterations in brain pathology. We discuss approaches that are critical for studying brain plasticity, deciphering the individual person-specific trajectory of brain development and aging, and testing new drug candidates in the in vitro models.

4.
eNeuro ; 11(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383588

RESUMEN

Parkinson's disease (PD) patients harbor seeding-competent α-synuclein (α-syn) in their cerebrospinal fluid (CSF), which is mainly produced by the choroid plexus (ChP). Nonetheless, little is known about the role of the CSF and the ChP in PD pathogenesis. To address this question, we used an intracerebroventricular (icv) injection mouse model to assess CSF α-syn spreading and its short- and long-term consequences on the brain. Hereby, we made use of seeding-competent, recombinant α-syn preformed fibrils (PFF) that are known to induce aggregation and subsequent spreading of endogenous α-syn in stereotactic tissue injection models. Here, we show that icv-injected PFF, but not monomers (Mono), are rapidly removed from the CSF by interaction with the ChP. Additionally, shortly after icv injection both Mono and PFF were detected in the olfactory bulb and striatum. This spreading was associated with increased inflammation and complement activation in these tissues as well as leakage of the blood-CSF barrier. Despite these effects, a single icv injection of PFF didn't induce a decline in motor function. In contrast, daily icv injections over the course of 5 days resulted in deteriorated grip strength and formation of phosphorylated α-syn inclusions in the brain 2 months later, whereas dopaminergic neuron levels were not affected. These results point toward an important clearance function of the CSF and the ChP, which could mediate removal of PFF from the brain, whereby chronic exposure to PFF in the CSF may negatively impact blood-CSF barrier functionality and PD pathology.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Ratones , Humanos , Animales , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/patología , Encéfalo/metabolismo , Neuronas Dopaminérgicas/metabolismo , Barrera Hematoencefálica/metabolismo
5.
J Nanobiotechnology ; 22(1): 43, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38287357

RESUMEN

The central nervous system (CNS) maintains homeostasis with its surrounding environment by restricting the ingress of large hydrophilic molecules, immune cells, pathogens, and other external harmful substances to the brain. This function relies heavily on the blood-cerebrospinal fluid (B-CSF) and blood-brain barrier (BBB). Although considerable research has examined the structure and function of the BBB, the B-CSF barrier has received little attention. Therapies for disorders associated with the central nervous system have the potential to benefit from targeting the B-CSF barrier to enhance medication penetration into the brain. In this study, we synthesized a nanoprobe ANG-PEG-UCNP capable of crossing the B-CSF barrier with high targeting specificity using a hydrocephalus model for noninvasive magnetic resonance ventriculography to understand the mechanism by which the CSF barrier may be crossed and identify therapeutic targets of CNS diseases. This magnetic resonance nanoprobe ANG-PEG-UCNP holds promising potential as a safe and effective means for accurately defining the ventricular anatomy and correctly locating sites of CSF obstruction.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Encéfalo/diagnóstico por imagen , Sistema Nervioso Central , Transporte Biológico/fisiología , Imagen por Resonancia Magnética
6.
Neurobiol Dis ; 189: 106347, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37951367

RESUMEN

Cerebral small vessel disease (CSVD) causes 20%-25% of stroke and contributes to 45% of dementia cases worldwide. However, since its early symptoms are inconclusive in addition to the complexity of the pathological basis, there is a rather limited effective therapies and interventions. Recently, accumulating evidence suggested that various brain-waste-clearance dysfunctions are closely related to the pathogenesis and prognosis of CSVD, and after a comprehensive and systematic review we classified them into two broad categories: trans-barrier transport and lymphatic drainage. The former includes blood brain barrier and blood-cerebrospinal fluid barrier, and the latter, glymphatic-meningeal lymphatic system and intramural periarterial drainage pathway. We summarized the concepts and potential mechanisms of these clearance systems, proposing a relatively complete framework for elucidating their interactions with CSVD. In addition, we also discussed recent advances in therapeutic strategies targeting clearance dysfunction, which may be an important area for future CSVD research.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Sistema Glinfático , Accidente Cerebrovascular , Humanos , Barrera Hematoencefálica/metabolismo , Meninges , Encéfalo/metabolismo
7.
Fluids Barriers CNS ; 20(1): 76, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875964

RESUMEN

BACKGROUND: As a consequence of SARS-CoV-2 infection various neurocognitive and neuropsychiatric symptoms can appear, which may persist for several months post infection. However, cell type-specific routes of brain infection and underlying mechanisms resulting in neuroglial dysfunction are not well understood. METHODS: Here, we investigated the susceptibility of cells constituting the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) of the choroid plexus (ChP) to SARS-CoV-2 infection using human induced pluripotent stem cell (hiPSC)-derived cellular models and a ChP papilloma-derived epithelial cell line as well as ChP tissue from COVID-19 patients, respectively. RESULTS: We noted a differential infectibility of hiPSC-derived brain microvascular endothelial cells (BMECs) depending on the differentiation method. Extended endothelial culture method (EECM)-BMECs characterized by a complete set of endothelial markers, good barrier properties and a mature immune phenotype were refractory to SARS-CoV-2 infection and did not exhibit an activated phenotype after prolonged SARS-CoV-2 inoculation. In contrast, defined medium method (DMM)-BMECs, characterized by a mixed endothelial and epithelial phenotype and excellent barrier properties were productively infected by SARS-CoV-2 in an ACE2-dependent manner. hiPSC-derived brain pericyte-like cells (BPLCs) lacking ACE2 expression were not susceptible to SARS-CoV-2 infection. Furthermore, the human choroid plexus papilloma-derived epithelial cell line HIBCPP, modeling the BCSFB was productively infected by SARS-CoV-2 preferentially from the basolateral side, facing the blood compartment. Assessment of ChP tissue from COVID-19 patients by RNA in situ hybridization revealed SARS-CoV-2 transcripts in ChP epithelial and ChP stromal cells. CONCLUSIONS: Our study shows that the BCSFB of the ChP rather than the BBB is susceptible to direct SARS-CoV-2 infection. Thus, neuropsychiatric symptoms because of COVID-19 may rather be associated with dysfunction of the BCSFB than the BBB. Future studies should consider a role of the ChP in underlying neuropsychiatric symptoms following SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Células Madre Pluripotentes Inducidas , Humanos , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , SARS-CoV-2/metabolismo , Pericitos/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Epiteliales/metabolismo , Plexo Coroideo/metabolismo
8.
Life (Basel) ; 13(10)2023 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-37895337

RESUMEN

The brain endothelial cell (BEC) glycocalyx (ecGCx) is a BEC surface coating consisting of a complex interwoven polysaccharide (sweet husk) mesh-like network of membrane-bound proteoglycans, glycoproteins, and glycosaminoglycans (GAGs) covering the apical luminal layer of the brain endothelial cells. The ecGCx may be considered as the first barrier of a tripartite blood-brain barrier (BBB) consisting of (1) ecGCx; (2) BECs; and (3) an extravascular compartment of pericytes, the extracellular matrix, and perivascular astrocytes. Perturbations of this barrier allow for increased permeability in the postcapillary venule that will be permissive to both fluids, solutes, and proinflammatory peripherally derived leukocytes into the perivascular spaces (PVS) which result in enlargement as well as increased neuroinflammation. The ecGCx is known to have multiple functions, which include its physical and charge barrier, mechanical transduction, regulation of vascular permeability, modulation of inflammatory response, and anticoagulation functions. This review discusses each of the listed functions in detail and utilizes multiple transmission electron micrographs and illustrations to allow for a better understanding of the ecGCx structural and functional roles as it relates to enlarged perivascular spaces (EPVS). This is the fifth review of a quintet series that discuss the importance of EPVS from the perspective of the cells of brain barriers. Attenuation and/or loss of the ecGCx results in brain barrier disruption with increased permeability to proinflammatory leukocytes, fluids, and solutes, which accumulate in the postcapillary venule perivascular spaces. This accumulation results in obstruction and results in EPVS with impaired waste removal of the recently recognized glymphatic system. Importantly, EPVS are increasingly being regarded as a marker of cerebrovascular and neurodegenerative pathology.

9.
Ecotoxicol Environ Saf ; 266: 115599, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37866033

RESUMEN

Concerns regarding adverse effects of metal/metalloids exposure on brain development and neurological disorders among children are increasing. However, the transport patterns of metals/metalloids across the blood-cerebrospinal fluid barrier (BCSFB) need to be clarified in children. A total of 99 Chinese pediatric patients were enrolled from February 2020 to August 2021, with a median age of 6.76 months. We detected 16 metal/metalloid levels in matched serum and cerebrospinal fluid (CSF) samples using inductively coupled plasma mass spectrometry. The BCSFB permeability of metals/metalloids were estimated and the potential effects of biomedical parameters were explored. Most metals/metalloids were detectable among > 80.0% of CSF samples. Significant correlations were observed between strontium (Sr, r = 0.46), molybdenum (Mo, r = 0.50), and cadmium (Cd, r = 0.24) concentrations in serum and CSF (P < 0.05). Ratios of metal/metalloid levels in CSF to serum (Rmetal) ranged from 0.02 to 0.74, and hazardous metals/metalloids including arsenic (As), Cd, lead (Pb), thallium (Tl), and manganese (Mn) showed high transfer efficiencies across the BCSFB (Rmetals > 0.5). With the adjustment of age and sex, albumin, ß2-microglobulin, and total protein levels in CSF were positively associated with copper (Cu) permeability (FDR-adjusted P < 0.05), while glucose in CSF was negatively correlated with calcium (Ca), Cu, Sr, and Mo BCSFB permeability (FDR-adjusted P < 0.05). Q-Alb promoted Cu permeability across the BCSFB (FDR-adjusted P < 0.001), while C-reactive protein levels in serum were positively associated with selenium (Se) permeability (FDR-adjusted P = 0.046). For the first time, our findings provided data for the BCSFB permeability of 16 metals/metalloids in children, and indicated that some biomedical parameters could influence the transformation of metals/metalloids from serum to CSF. Metals/metalloids with strong BCSFB permeability warrant attention for their potential neurotoxicity.


Asunto(s)
Metaloides , Humanos , Niño , Lactante , Metaloides/análisis , Cadmio , Cobre , Calcio , Permeabilidad
10.
J Neurosci Res ; 101(12): 1900-1913, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37787045

RESUMEN

Control of breast-to-brain metastasis remains an urgent unmet clinical need. While chemotherapies are essential in reducing systemic tumor burden, they have been shown to promote non-brain metastatic invasiveness and drug-driven neurocognitive deficits through the formation of neurofibrillary tangles (NFT), independently. Now, in this study, we investigated the effect of chemotherapy on brain metastatic progression and promoting tumor-mediated NFT. Results show chemotherapies increase brain-barrier permeability and facilitate enhanced tumor infiltration, particularly through the blood-cerebrospinal fluid barrier (BCSFB). This is attributed to increased expression of matrix metalloproteinase 9 (MMP9) which, in turn, mediates loss of Claudin-6 within the choroid plexus cells of the BCSFB. Importantly, increased MMP9 activity in the choroid epithelium following chemotherapy results in cleavage and release of Tau from breast cancer cells. This cleaved Tau forms tumor-derived NFT that further destabilize the BCSFB. Our results underline for the first time the importance of the BCSFB as a vulnerable point of entry for brain-seeking tumor cells post-chemotherapy and indicate that tumor cells themselves contribute to Alzheimer's-like tauopathy.


Asunto(s)
Enfermedad de Alzheimer , Neoplasias Encefálicas , Neoplasias de la Mama , Humanos , Femenino , Metaloproteinasa 9 de la Matriz/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo
11.
Front Mol Biosci ; 10: 1232109, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37621994

RESUMEN

Nanogels are highly recognized as adaptable drug delivery systems that significantly contribute to improving various therapies and diagnostic examinations for different human diseases. These three-dimensional, hydrophilic cross-linked polymers have the ability to absorb large amounts of water or biological fluids. Due to the growing demand for enhancing current therapies, nanogels have emerged as the next-generation drug delivery system. They effectively address the limitations of conventional drug therapy, such as poor stability, large particle size, and low drug loading efficiency. Nanogels find extensive use in the controlled delivery of therapeutic agents, reducing adverse drug effects and enabling lower therapeutic doses while maintaining enhanced efficacy and patient compliance. They are considered an innovative drug delivery system that highlights the shortcomings of traditional methods. This article covers several topics, including the involvement of nanogels in the nanomedicine sector, their advantages and limitations, ideal properties like biocompatibility, biodegradability, drug loading capacity, particle size, permeability, non-immunological response, and colloidal stability. Additionally, it provides information on nanogel classification, synthesis, drug release mechanisms, and various biological applications. The article also discusses barriers associated with brain targeting and the progress of nanogels as nanocarriers for delivering therapeutic agents to the central nervous system.

12.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37628722

RESUMEN

For brain protection, the blood-brain barrier and blood-cerebrospinal fluid barrier limit the traffic of molecules between blood and brain tissue and between blood and cerebrospinal fluid, respectively. Besides their protective function, brain barriers also limit the passage of therapeutic drugs to the brain, which constitutes a great challenge for the development of therapeutic strategies for brain disorders. This problem has led to the emergence of novel strategies to treat neurological disorders, like the development of nanoformulations to deliver therapeutic agents to the brain. Recently, functional molecular clocks have been identified in the blood-brain barrier and in the blood-cerebrospinal fluid barrier. In fact, circadian rhythms in physiological functions related to drug disposition were also described in brain barriers. This opens the possibility for chronobiological approaches that aim to use time to improve drug efficacy and safety. The conjugation of nanoformulations with chronobiology for neurological disorders is still unexplored. Facing this, here, we reviewed the circadian rhythms in brain barriers, the nanoformulations studied to deliver drugs to the brain, and the nanoformulations with the potential to be conjugated with a chronobiological approach to therapeutic strategies for the brain.


Asunto(s)
Encéfalo , Cabeza , Composición de Medicamentos , Barrera Hematoencefálica , Ritmo Circadiano
14.
Pharm Res ; 40(11): 2715-2730, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37610619

RESUMEN

BACKGROUND: Oxycodone active uptake across the blood-brain barrier (BBB) is associated with the putative proton-coupled organic cation (H+/OC) antiporter system. Yet, the activity of this system at the blood-cerebrospinal fluid barrier (BCSFB) is not fully understood. Additionally, sex differences in systemic pharmacokinetics and pharmacodynamics of oxycodone has been reported, but whether the previous observations involve sex differences in the function of the H+/OC antiporter system remain unknown. The objective of this study was, therefore, to investigate the extent of oxycodone transport across the BBB and the BCSFB in female and male Sprague-Dawley rats using microdialysis. METHODS: Microdialysis probes were implanted in the blood and two of the following brain locations: striatum and lateral ventricle or cisterna magna. Oxycodone was administered as an intravenous infusion, and dialysate, blood and brain were collected. Unbound partition coefficients (Kp,uu) were calculated to understand the extent of oxycodone transport across the blood-brain barriers. Non-compartmental analysis was conducted using Phoenix 64 WinNonlin. GraphPad Prism version 9.0.0 was used to perform t-tests, one-way and two-way analysis of variance followed by Tukey's or Sídák's multiple comparison tests. Differences were considered significant at p < 0.05. RESULTS: The extent of transport at the BBB measured in striatum was 4.44 ± 1.02 (Kp,uu,STR), in the lateral ventricle 3.41 ± 0.74 (Kp,uu,LV) and in cisterna magna 2.68 ± 1.01 (Kp,uu,CM). These Kp,uu values indicate that the extent of oxycodone transport is significantly lower at the BCSFB compared with that at the BBB, but still confirm the presence of active uptake at both blood-brain interfaces. No significant sex differences were observed in neither the extent of oxycodone delivery to the brain, nor in the systemic pharmacokinetics of oxycodone. CONCLUSIONS: The findings clearly show that active uptake is present at both the BCSFB and the BBB. Despite some underestimation of the extent of oxycodone delivery to the brain, CSF may be an acceptable surrogate of brain ISF for oxycodone, and potentially also other drugs actively transported into the brain via the H+/OC antiporter system.


Asunto(s)
Barrera Hematoencefálica , Oxicodona , Ratas , Femenino , Masculino , Animales , Oxicodona/farmacocinética , Microdiálisis , Caracteres Sexuales , Ratas Sprague-Dawley , Encéfalo , Antiportadores
15.
Fluids Barriers CNS ; 20(1): 59, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582792

RESUMEN

Insulin-like growth factor-1 (IGF-1) is essential for normal brain development and regulates essential processes of vascular maturation and stabilization. Importantly, preterm birth is associated with reduced serum levels of IGF-1 as compared to in utero levels. Using a preterm rabbit pup model, we investigated the uptake of systemic recombinant human (rh) IGF-1 in complex with its main binding protein IGF-binding protein 3 (BP-3) to the brain parenchyma via the choroid plexus. Five hours after subcutaneous administration, labeled rhIGF-1/rhIGFBP-3 displayed a widespread presence in the choroid plexus of the lateral and third ventricle, however, to a less degree in the fourth, as well as in the perivascular and subarachnoid space. We found a time-dependent uptake of IGF-1 in cerebrospinal fluid, decreasing with postnatal age, and a translocation of IGF-1 through the choroid plexus. The impact of systemic rhIGF-1/rhIGFBP-3 on IGF-1 receptor activation in the choroid plexus decreased with postnatal age, correlating with IGF-1 uptake in cerebrospinal fluid. In addition, choroid plexus gene expression was observed to increase with postnatal age. Moreover, using choroid plexus in vitro cell cultures, gene expression and protein synthesis were further investigated upon rhIGF-1/rhIGFBP-3 stimulation as compared to rhIGF-1 alone, and found not to be differently altered. Here, we characterize the uptake of systemic rhIGF-1/rhIGFBP-3 to the preterm brain, and show that the interaction between systemic rhIGF-1/rhIGFBP-3 and choroid plexus varies over time.


Asunto(s)
Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina , Factor I del Crecimiento Similar a la Insulina , Animales , Femenino , Humanos , Recién Nacido , Conejos , Encéfalo/metabolismo , Plexo Coroideo/metabolismo , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/farmacología , Factor I del Crecimiento Similar a la Insulina/farmacología , Proteínas Recombinantes/metabolismo , Animales Recién Nacidos
16.
EMBO J ; 42(17): e111515, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37427561

RESUMEN

Accumulating evidence indicates that gut microbiota dysbiosis is associated with increased blood-brain barrier (BBB) permeability and contributes to Alzheimer's disease (AD) pathogenesis. In contrast, the influence of gut microbiota on the blood-cerebrospinal fluid (CSF) barrier has not yet been studied. Here, we report that mice lacking gut microbiota display increased blood-CSF barrier permeability associated with disorganized tight junctions (TJs), which can be rescued by recolonization with gut microbiota or supplementation with short-chain fatty acids (SCFAs). Our data reveal that gut microbiota is important not only for the establishment but also for the maintenance of a tight barrier. Also, we report that the vagus nerve plays an important role in this process and that SCFAs can independently tighten the barrier. Administration of SCFAs in AppNL-G-F mice improved the subcellular localization of TJs at the blood-CSF barrier, reduced the ß-amyloid (Aß) burden, and affected microglial phenotype. Altogether, our results suggest that modulating the microbiota and administering SCFAs might have therapeutic potential in AD via blood-CSF barrier tightening and maintaining microglial activity and Aß clearance.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Microbiota , Ratones , Animales , Barrera Hematoencefálica/patología , Microbioma Gastrointestinal/fisiología , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Ácidos Grasos Volátiles
17.
Cell Rep ; 42(7): 112785, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37436901

RESUMEN

Peripheral inflammation has been linked to various neurodegenerative disorders, including Alzheimer's disease (AD). Here we perform bulk, single-cell, and spatial transcriptomics in APP/PS1 mice intranasally exposed to Staphylococcus aureus to determine how low-grade peripheral infection affects brain transcriptomics and AD-like pathology. Chronic exposure led to increased amyloid plaque burden and plaque-associated microglia, significantly affecting the transcription of brain barrier-associated cells, which resulted in barrier leakage. We reveal cell-type- and spatial-specific transcriptional changes related to brain barrier function and neuroinflammation during the acute infection. Both acute and chronic exposure led to brain macrophage-associated responses and detrimental effects in neuronal transcriptomics. Finally, we identify unique transcriptional responses at the amyloid plaque niches following acute infection characterized by higher disease-associated microglia gene expression and a larger effect on astrocytic or macrophage-associated genes, which could facilitate amyloid and related pathologies. Our findings provide important insights into the mechanisms linking peripheral inflammation to AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ratones Transgénicos , Placa Amiloide/metabolismo , Transcriptoma/genética , Encéfalo/metabolismo , Microglía/metabolismo , Inflamación/patología , Modelos Animales de Enfermedad , Péptidos beta-Amiloides/metabolismo
19.
Biomedicines ; 11(5)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37239132

RESUMEN

Cerebrospinal fluid plays a crucial role in protecting the central nervous system (CNS) by providing mechanical support, acting as a shock absorber, and transporting nutrients and waste products. It is produced in the ventricles of the brain and circulates through the brain and spinal cord in a continuous flow. In the current review, we presented basic concepts related to cerebrospinal fluid history, cerebrospinal fluid production, circulation, and its main components, the role of the blood-brain barrier and the blood-cerebrospinal fluid barrier in the maintenance of cerebrospinal fluid homeostasis, and the utility of Albumin Quotient (QAlb) evaluation in the diagnosis of CNS diseases. We also discussed the collection of cerebrospinal fluid (type, number of tubes, and volume), time of transport to the laboratory, and storage conditions. Finally, we briefly presented the role of cerebrospinal fluid examination in CNS disease diagnosis of various etiologies and highlighted that research on identifying cerebrospinal fluid biomarkers indicating disease presence or severity, evaluating treatment effectiveness, and enabling understanding of pathogenesis and disease mechanisms is of great importance. Thus, in our opinion, research on cerebrospinal fluid is still necessary for both the improvement of CNS disease management and the discovery of new treatment options.

20.
Front Cell Infect Microbiol ; 13: 1113528, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065199

RESUMEN

The Gram-negative bacterium Neisseria meningitidis, which causes meningitis in humans, has been demonstrated to manipulate or alter host signalling pathways during infection of the central nervous system (CNS). However, these complex signalling networks are not completely understood. We investigate the phosphoproteome of an in vitro model of the blood-cerebrospinal fluid barrier (BCSFB) based on human epithelial choroid plexus (CP) papilloma (HIBCPP) cells during infection with the N. meningitidis serogroup B strain MC58 in presence and absence of the bacterial capsule. Interestingly, our data demonstrates a stronger impact on the phosphoproteome of the cells by the capsule-deficient mutant of MC58. Using enrichment analyses, potential pathways, molecular processes, biological processes, cellular components and kinases were determined to be regulated as a consequence of N. meningitidis infection of the BCSFB. Our data highlight a variety of protein regulations that are altered during infection of CP epithelial cells with N. meningitidis, with the regulation of several pathways and molecular events only being detected after infection with the capsule-deficient mutant. Mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD038560.


Asunto(s)
Neisseria meningitidis , Humanos , Neisseria meningitidis/fisiología , Plexo Coroideo/microbiología , Células Epiteliales/microbiología , Barrera Hematoencefálica/microbiología , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...